Attendees: Sean Finn, Mary McFadzen, Alisa Wade, Bailie Eikill, Kelly Cooley, SOlliff, Aubin Douglas, Richard Klafki, Linh Hoang, Benjamin Misener, Sarah Lundstrum, Connie Simmons, Kathy Zeller, Anne Carlson, Richard Janssen, Natalie Poremba, Erin Sexton, Laura Caplins, Mike Durglo, Mary McClelland

<u>Funding</u>

- Funds coming in
 - USFWS
 - FY22: \$71,877
 - The Wilderness Society
 - FY22:\$35,000
 - Total funds = total funds since FY19 = \$285,978; in kind=priceless
- Funding Breakdown

Task/Role	Funds	Target
Project Coordinator	\$30,000	Natalie Poremba
GIS cartographer	\$20,020	Phil Matson
Spatial Modeling Contract	\$22,000	Contractor
Climate Adaptation Specialist	\$24,000	NC Climate Adaptation Science Center
Meetings & Travel	\$ 5,172	Let's find a time to convene!
Indirect/Overhead	\$ 5 <i>,</i> 685	

• Spatial modeling contract - there is no one particular in mind, Kelly may know good people to recommend when the time comes

LCD Process

0

- Ultimate Goal: collaboratively build a blueprint and road map for a socio-ecologically resilient and sustainable Crown of the future
 - Where does conservation opportunity present itself and how do we get there?
- Steps:
 - 1. Initiate
 - Convened by Crown Managers Partnership, seed funding from USFWS, website
 - 2. Convene
 - 42 stakeholders on leadership team
 - Analysis team, Tech team, Social cultural, and economic team
 - Select 15 ecological features

Whitebark Pine	Forest
Bull Trout	Grassland
Westslope Cutthroat	Shrubland
Mule Deer	Wetland
Elk	Riparian
Grizzly Bear	Aquatic Systems
Wolverine	Connectivity
Canada Lynx	

- Good representations of biodiversity across the Crown
- o 3. Assess
 - Reviewed 63 mgmt documents, phase 1 data exploration, conceptual models, building cost layers
 - This is where we are currently!
 - Situation analysis:
 - Where are these features?
 - What are status and trends?
 - What contributes to their conservation?
 - What hinders their conservation and why?
 - We are using the best available info: data sets, TEK, expert knowledge

- Process:
 - Draft conceptual models ->receive expert feedback -> refine the conceptual models -> determine the "costs" ->assign thresholds/quantitative
 - We had 52 experts respond people are invested!
 - Optimization = finding the best solution from among the set of all feasible solutions

- "Cost" can be calculated as area, economic cost, estimate of socio-ecological issues where high-cost sites are ones we wish to avoid
- Cost is where risk is higher and its more resource intensive
 this doesn't necessarily mean we won't do work there
- Given our difference in knowledge/uncertainty about certain species relative to others, is there a way to incorporate this uncertainty?
 - We are documenting where info comes from and we can go back where there is uncertainty or disagreement in future iterations

Social, Cultural, and Economic team

- Selected 2 features thus far
 - Water Access
 - Air Quality

News from the Field

- Alternative Land Use Services working with private landowners in Alberta <u>https://alus.ca/</u>
 - Community developed, farmer delivered, targeted, market driven, voluntary
 - Pay producer for value of ecological good or service
 - Kelly will have a future presentation
- Emerging economies that Y2Y is doing
 - Completed phase 1, phase 2 is well underway
 - \circ $\ \$ Y2Y will share results with the leadership team when completed
- America the Beautiful
 - Aiming for a billion for america the beautiful coming out of Bipartisan Infrastructure -

https://www.whitehouse.gov/ceq/news-updates/2022/04/11/biden-harris-administr ation-launches-1-billion-america-the-beautiful-challenge-to-support-and-accelerat e-locally-led-conservation-and-restoration-projects/

- Call for proposals will come out in may National Fish and Wildlife Foundation (NFWF)
 - A lot of funding will be directed to states and tribes
 - Also plans that have lots of community support
 - Climate informed, cores and connectivity, environmental justice
- https://www.nfwf.org/programs/america-beautiful-challenge

Next Meetings

• We will be meeting every other month as a leadership team

Crown of the Continent Landscape Conservation Design

26 April 2022

Today's Agenda

- 1. Updates
 - Funding FY22
 - Phase 2: Ecological Feature progress
- 2. News from the Field
- 3. Any Additions?

Funding Update

US Fish and Wildlife Service:

- FY22 --- \$71,877
- FY21 --- \$25,000
- FY20 --- \$97,271
- FY19 --- \$41,831

The Wilderness Society

- FY22 --- \$35,000
- FY21 --- \$15,000
 - "to provide support for Indigenous governments (CSKT, the Blood/ Kainai, Piegan and Blackfeet) to lead the identification of cultural priorities for the collaborative Landscape Conservation Design in the Crown of the Continent"

Total funds: \$285,978 Total In-kind: Priceless (Leadership Team, Technical Team, Subcommittees, Experts)

FY22 Funding Breakdown

Task/Role	Funds	Target
Project Coordinator	\$30,000	Natalie Poremba
GIS cartographer	\$20,020	Phil Matson
Spatial Modeling Contract	\$22,000	Contractor
Climate Adaptation Specialist	\$24,000	NC Climate Adaptation Science Center
Meetings & Travel	\$ 5,172	Let's find a time to convene!
Indirect/Overhead	\$ 5,685	

LCD Process in the Crown of the Continent

Ultimate Goal:

Collaboratively build a **blueprint** and a **road map** for a socioecological resilient and sustainable Crown of the Continent Ecosystem of the Future

LCD Process in the Crown of the Continent

Convened by Crown Manager Partnership codified in the CMP 2021 Strategic Framework

Seed funding from USFWS

Website:

https://www.crownmanagers.org/landscape-conservationdesign

42 Stakeholders join Leadership Team

Analysis Team, Technical Team established

LCD Project Area identified, and 15 Focal Ecological Features selected

LCD Process in the Crown of the Continent

Reviewed 63 management documents

"Phase 1" data exploration and feasibility

Situation Analyses through Conceptual Modeling & Expert Elucidation

Building conservation "Cost" or resistance layers

Blueprints for focal features and CoCE

Road maps integrated with jurisdictional authorities and mandates

Feature Selection

15 Ecological Features

Whitebark Pine	Forest
Bull Trout	Grassland
Westslope Cutthroat	Shrubland
Mule Deer	Wetland
Elk	Riparian
Grizzly Bear	Aquatic Systems
Wolverine	Connectivity
Canada Lynx	

- See <u>Selection Report</u> on website
- Social, Culture, Economic Feature selection in progress (SCE Team)

Situation Analyses:

- Where are these features?
- What are status and trends?
- What contributes to their conservation?
- What hinders conservation and why?

Situation Analyses:

- Where are these features?
- What are status and trends?
- What contributes to their conservation
- What hinders conservation and why?

> 300 data layers cataloged and evaluated

Paradigm: B

information

est available	

me sm

DISTURBANCE				
Human-Wildlife Conflicts "AEP/SolGen"	AEP/SolGen	Human-Wildlife Conflicts	AB	report from Bow Valley on bea
Human-Wildlife Conflicts	WildSmart	Human-Wildlife Conflicts	BC	
Coal mines - Elk Valley	CMP	Active coal mine operations in the East Kootenay region of SE British Columbia.		
Western large Surface Mines	Digitized from selected MRDS points	Polygon shapefiles of large surface mines in the study area, 2014		
Wind turbine density	FAA wind turbine locations	Kernel Density calculated from point shapefile, 2015		Need to filter for those active,
Oil and gas well density				
O&G Roads	USGS Garman et al.	to be obtained		Only available for Wyoming
Future O&G	Copeland et al. 2009; Copeland et al. 2013	Probability of future oil and gas development, also calculated mean value at HUC12 level		
Current oil and gas wells (2016)	CMP	Shows surface wellsites related to energy resource in the Crown of the Continent with a 50km buffer.		
Oil and Gas Wells (c. 2009)	CMP	Current as of April 4, 2013: This geodatabase contains all freely available spatial information on surface wellsites	related to energy resou	
Water use demands	State level, potential refine to county use/demands?			
Uranium mines				Be sure to capture holding and
Solar energy potential	NREL			
Wind energy potential	NREL, Canada Wind Atlas			
Mines	open.canada.ca	point locations for oil and gas, and producing mines	Crown_LCD_Boundary	
Minor road mapped	Counties			Very challenging to compile
Pipelines in the Crown	CMP	Contains all freely available spatial information on pipelines in the Crown of the Continent area.		
Pipelines in the Crown (c. 2020)	CMP	Contains all freely available spatial information on pipelines in the Crown of the Continent area circa 2020.		
Human Modification: 2017	Theobald et al. 2020		Global	
		Detailed temporal mapping of global human modification from 1990 to 2017		

Situation: Understanding Current Condition

Key Attributes

& Indicators

Measureable

Objectives

Desired Future Condition

Current Condition

Conceptual Models

Whiteba	rk Pine		RELAT	IVE CONDITION	
KEY ECOLOGICAL ATTRIBUTE	INDICATOR (METRIC)	Poor	Fair	Good	Very Good
Whitepine Blister rust	wetness index	subhygric - hygric (>14)	mesic	submesic to subxeric	subxeric to very xeric
Mountain Pine Beetle	Cumulative MPB Severity, mortality	30-50%	11-29%		1-10%
Changes in fire regimes	burn severity for existing stands	(2.25 –3; est. 90-100% large tree mortality	1.25 -<2.25; est. 10-90% large tree mortality	0.1 -<1.25; estimated 5-10% large tree mortality)	no burns
Changes in fire regimes	burn severity as a loction for restoration	high severity	,	moderate	
Species Encroachment	enrocachment - Vmap Shade Tolerant Canopy	>60%	40-60%	25-40%	0-25%
Genetic stability	distance between stands				7.5miles (12km)
Extraction/destruction of stands	number of stands lost from mining/extractive industries	entire stand in area of development			no development present
				Desi	red Conditions

Map Costs (Relative to Objectives)

Spatial Models

Step 1: Draft Conceptual Model from Literature Step 2: Vet Draft Models through Expert Review Step 3: Refine Conceptual Models Step 4: Estimate the relative cost of conservation delivery Step 5: Build out spatial data models

В

A

С

				Please describe your	In your opinion, what is the	A	В	с	D	E	F	G	н
		Approximately how		general perception of	single most critical threat to		-	Westelone Cutthreat	Trout				
		many years have you		this feature	long-term persistence and			weststope Cuttinoat	Tiout	RELATIV	Desired (Conditions	=
	Name and Affiliation/	worked with the	What is your primary	conservation status in	viability of this feature in the	FThroat	KEY ECOLOGICAL		D		Grad	Very Const]
Fosturo	Organization	enocioe/system?	goography of interest?	the Project Area	Crown occesstom?	lineal	ATTRIBUTE	Mean Aug. Stream Temp	Poor	Fair	Good	very Good	Conservation playbook 2.0 (cites sources within); EcoSheds
reature		species/system:	geography of interest:	the Project Area	crown ecosystem:		Stream Temperature	(degC) Max Aug. Stream Tomp	20+	15-20	13-15	<13	(Muhlfeld et al.)
					Climate change and loss of	Climate Risk		(degC)	23+	17-22	15-17	<15	EcoSheds (Muhifeld et al.)
	Mary Manning, US Forest		MT, Rocky Mtns, Great		stream flows to sustain these	Demographic Risk	Demographic Connectivity	Number of other populations connected (#)	<10	11-43	44-69	>70	EcoSheds (Muhlfeld et al.)
Riparian	Service	36	Basin	Vulnerable	ecosystems	3,		Weighted (by fluvial					
					,		Hybridization Threat	admixture among all					
								interconnected populations (Index)					EcoSheds (Muhlfeld et al.); brook trout and rainbow trout - CM: "leading threat for salmonids"
							Rainbow Trout Admixtu	Rainbow trout observed (0 to		400/		-40/	Vin D'Angelo (pers comm) based on Shepherd (Clint - manager
						Genetic Risk*	•	100)	,	>1U%		\$170	Shepard, Bradley & Spoon, R. & Nelson, L. (2002). A native
	Michael Wagner, Forest												westslope cutthroat trout population responds positively after brook trout removal and babitat restoration. Intermountain Journal of
	Hydrologist / Government of				cumulative impacts of land u	Ľ	Inter-specific Competitio & Displacement	n Brook, Brown, Rainbow and Lake Trout observed					Sciences. 8. ; Seiler & Keeley, 2009, https://doi.org/10.1139/F08-194
Riparian	Alberta	18	AB	Apparently Secure	and development								; Al-Chokhachy & Sepulveda, 2018, https://doi.org/10.1002/nafm.10244 ; Wairight et al., 2021
	Stewart Rood Liniversity of				river damming water			Brown Lake Trout and					https://www.pnas.org/content/118/45/e2102179118.short?rss=1
D ¹	Stewart Rood Oniversity of				inver damining, water		Predation	Northern Pike observed					
Riparian	Lethbridge	30	Crown	vuinerable	withdrawai		410	Presence of Quagga/zebra mussles, NZ Mudsnails,					
						Invasive & Introduced	AIS	purple loosestrife, and/or					https://www.nps.gov/rlc/crown/upload/Aquatic-Invasive-Species-Brief.
						apecies		Lurasian water/fillion					Put

Example: Whitebark Pine

Step 1: Draft Conceptual Model based on Literature Review

Citations:

1. Crown of the Continent High Five Working Group Technical Team. 2019. Crown of the Continent Ecosystem Whitebark pine restoration strategy: <u>Project</u> <u>Summary</u>. Crown Managers Partnership.

Example: Whitebark Pine

Step 1: Draft Conceptual Model from Literature Step 2: Vet Draft Models through Expert Review

* 4. Please describe your general perception of Canada lynx conservation status in the Project Area (see map, above). The categories listed are defined by NatureServe, you can see more complete definitions of each category here.

- Secure (very low risk of extinction or elimination)
- O Apparently Secure (fairly low risk of extinction or elimination)
- O Vulnerable (moderate risk of extinction or elimination)
- O Imperiled (high risk of extinction or elimination)
- Critically Imperiled (very high risk of extinction or elimination)

* 5. In your opinion, what is the <u>single most critical threat</u> to the long-term persistence and viability of Canada lynx in the Crown ecosystem?

* 6. Please list 2-3 additional threats (in descending order, if appropriate) to the long-term persistence and viability of Canada lynx in the Crown ecosystem.

* 7. Considering your answers for Questions 6 and 7 above, are you aware of spatial data that concisely describe or best approximate the key threat(s) you listed? If so, please briefly describe the data and provide a contact name or organization we should contact to acquire the data.

Name / Affiliation	Years Experience	General Perception	Primary Threat	Secondary Threats
Michael Murray / BC Ministry of Forests	29	Vulnerable	White Pine Blister Rust	Mountain Pine Beetle, Altered Fire Regimes
Dawn LaFleur Glacier National Park	20	Critically Imperiled	White Pine Blister Rust	Drought, wildland fire, mountain pine beetle
Sabine Mellmann- Brown, USFS Region 1	30	Imperiled	White pine blister rust	Changes in natural fire regimes confounded by climate change
Bob Keane, USFS Emeratus	40	Imperiled	White pine blister rust	climate change; increasing wildfires; increasing mountain pine beetles
Rick Yates, US Forest Service - Retired	25	Vulnerable	Climate-change	Pine beetle, wild fire, prescribed fire
Nick Lai, Parks Canada	0.5	Apparently Secure	Blister Rust	Fire suppression, climate change, resource extraction (forestry, etc.)
Michael Murray / FLNRORD	29	Imperiled	Blister Rust Disease	Mountain Pine Beetle and Changing Fire Regimes
ShiNaasha Pete, CSKT Forestry	8	Imperiled	Fire Supression	Blister rust, Pine beetle, species encroachment

Expert Surveys n = 84 experts identified 52 responses received

						Apere	5/1	cuture		
Ecological Feature	Conceptual Model	Expert Survey I	1	3	5	7	9	11	13	15
Westslope Cutthroat Trout										
Bull Trout						_				
Mule Deer										
Rocky Mountain Elk							_			
Grizzly Bear										
Wolverine										
Canada Lynx										
Whitebark Pine										
Aquatics										
Forest										
Grassland										
Riparian										
Shrubland										
Wetlands										
Connectivity										

Example: Whitebark Pine

Step 1: Draft Conceptual Model from Literature

Step 2: Vet Draft Models through Expert Review

Step 3: Refine Conceptual Models

The "COST" of delivering conservation to Whitebark Pine

Optimization Modeling*

optimization problem: the problem of finding the *best* solution from among the set of all *feasible* solutions.

Crown LCD Planning Unit (n = 66,866)

Planning Unit (n = 9)

* used in a range of sectors including business investment, biotechnology, metallurgy, agriculture, medicine, sociology and a variety of natural resource decisions

Optimization Modeling

optimization problem: the problem of finding the *best* solution from among the set of all *feasible* solutions.

$$\frac{1}{\sum_{PUS} Cost} + \text{BLM} \sum_{PUS} Boundary + \sum_{Con.Targ.} SPFx \text{Penalty}$$

Each Planning Unit is assigned scores based on its relative value for the Conservation Feature and the "Cost" of delivering conservation there

"Cost can be calculated as:

- A simple reflection of area,
- An economic cost, or
- An estimate of socio-ecological issues where high-cost sites are ones we wish to avoid, all else being equal."

Cost as an estimate of socio-ecological issues where higher cost planning units are ones we wish to avoid, all else being equal.

Analogous to a 'Resistance Surface' used in many spatial models, for example ecological connectivity analyses:

Y ariable	Ecological influence	Resistance weight	E w	colog eight	ical	source
Development						
Hard development	Impervious surfaces interrupt ecological flows	10	10	000		Centre for Remote Sensing et al. 2020; Microsoft 2017; Crown Managers Partnership 2016
Traffic rate	Higher traffic roads pose greater mortality risks for species movement	40)			Crown Managers Partnership 2016
Agriculture	Affects natural ecological processes	3	3			Centre for Remote Sensing et al. 2020
Moisture and hydrology						
Wetness	Amount of moisture at any location. Affects species habitat, soils, and nutrient cycling	4 (now 1)	8	(now	4)	Derived from NASA 30m SRTM; Farr et al. 2007
Flow accumulation (ln)	Amount of water in rivers, streams, and wetland. Affects species habitat and sediment transport	4	4			Derived from NASA 30m SRTM; Farr et al. 2007 and stream lines from Jones et al. 2017
Flow gradient	Stream slope (percent). Affects sediment and nutrient transport and species habitat	1	2			Lerived from NASA 30m SRTM; Farr et al. 2001 and <u>stream lines</u> from Jones et al. 2017

Borrowed from Zeller et al. in prep. Ecological connectivity in the crown of the continent

We define Cost as an estimate of socio-ecological issues where higher cost planning units are ones we wish to avoid, all else being equal.

Example: Whitebark Pine

Whitebark Pine **RELATIVE CONDITION KEY ECOLOGICAL Step 1: Draft Conceptual** INDICATOR (METRIC) Poor Fair Good Very Good Information Source/Documentation Model from Literature Introduction of white pine subhygric submesic to blister rust^{0*} hygric (>14) subxeric mesic subxeric to very xeric arboton, D. 2005. Terrain Analysis Using Digital Elevat wetness index **Step 2: Vet Draft Models** Increasing through Expert Review Cumulative MPB Severity, **Mountain Pine** 30-50% 1-10% 11-29% mortality surveys Beetle* 0.1 -<1.25: (2.25 -3; est. 1.25 -<2.25; est. estimated **Step 3: Refine Conceptual** 90-100% large 10-90% larce 5-10% large Increased Burn tree mortality) no burns burn severity for existing stands tree mortality tree mortal v Key C. H.; Benson, N. C. (1999) Measuring and remote Severity/Wildfires^{0*} Models moderate high severity burn severity as a loction for restoration Encroachment/ Step 4: Estimate the enrocachment - Vmap Shade >60% 40-60% 25-40% 0-25% Tolerant Canopy Cover Competition* relative cost of Whitebark distance between stands 7.5miles (12km) e distance that Clark's nutcrackers will reasonably fly Pine conservation Genetic stability entire stand in no development area of number of stands lost from present Extraction/destruction of stands development mining/extractive industries Desired Conditions

Situation: Understanding Current Condition

Th Analysis Team is carefully defining Cost for each ecological feature using published literature, management plans and consulting with experts

Whitebark Pine	Forest
Bull Trout	Grassland
Westslope Cutthroat	Shrubland
Mule Deer	Wetland
Elk	Riparian
Grizzly Bear	Aquatic Systems
Wolverine	Connectivity
Canada Lvnx	

	Feature				RELATIVE CONDITION		
	Key Ecological Attribute	Indicator (Metric)		Poor	Fair	Good	Very Good
	Ave Seesand Temperature						
Ave Season	Ave Seasonal Temperature	Max seasonal Temp (degC)	Max Aug Temps	> 22 degrees Celsius	>22 degrees Celsius	<22 degrees Celsius	<22 degrees Celsius
	Snow Pack	Snow Cover (depth, duration)	hunting success	shallow, short	shallow, short	Deep, persistant	Deep, persistant
		Persistant Spring Snow Cover	denning/kit survivability	No snow from April 24 to May 15	No snow from April 24 to May 15	Snow present from April 24 to Ma	Snow present from April 24 to Ma
		food caching	lactation, litter loss	absence of food caches/winter kill	absence of food caches/winter k	Il presence of food caches/winter ki	I presence of food caches/winter ki
		prey density	lactation, litter loss	no summer supply carrion/marmo	little summer supply carrion/mar	n summer supply carrion/marmot/ne	e summer supply carrion/marmot/net
	Hunting/Trapping	direct mortality		>8.4% of population	8.4% of population	<8.4% of population	4.2% of population
	Hunting/Trapping	direct mortality		trapping allowed	no trapping allowed	no trapping allowed	no trapping allowed
	Harvest pressure			trapping allowed	no trapping allowed	no trapping allowed	no trapping allowed
DRAFT						consistant, lots	
Crown of the Continent					nce of winter rec	absence of winter rec	absence of winter rec
Landscape Conservation Design			Habitat		oad densities (from o	low densities (<0.44 km/km2)	very low densities (<0.06 km/km
DRAFT MATERIAL 04/20/2022 Please do not cite or	Max August	Selec	tion/Dispersal ^{o*}		km/km2	0.44 to 1.06 km/km2	<0.44 km/km2
circulate	Temp		1	Wolverine	ce of disturbances	Absence of disturbances	Absence of disturbances
			Food	Persistence	ce of disturbances	Absence of disturbances	Absence of disturbances
Climate	Snowpack	Snow	Caching		te/fox presence	coyote/fox absence	coyote/fox absence
Change	Persistence ^{0*}	Cover*			yote/fox presence	wolf/coyote/fox absence	wolf/coyote/fox absence
		Hunting/Scavengin		Abundance,			
T		Opportunity ⁰		health,	ating/mixed forests	Dense Conifer/Shrub/SnowCover	Dense Conifer/Shrub/SnowCover
	Hunting/	oppontation		reproduction	km2), females >100 km2	males > 100km2	males 1582km2, females 384km2
	Trapping		Lactation/Kit				
Human			Survival ^o				
Behavior		Exposure to		Disporsal			
	Winter	Predation/		Dispersar			
Mining	Necreation	Competition					
Dev	velopment ⁰ *						
Land	Road			Survival	_	_	
Conversion Deve	elopment ^o *				Fe	ature =	
	→ Density					acare	
		Avoidance**					
						olverine	
Cove	г Туре				vv	OIVCIIIC	
			→ Denning ^o *				
				⁰ Data and documentation iden	tified		
	> Con	anectivity ^{0*}		* Defined indicator metrics			
	COL	mound					

Citations:
1. Inman, R.M., Magoun, A. J., Persson, J., Mattisson, J. (2012). The wolverine's niche: linking reproductive chronology, caching, Journal of Mammalogy, 93(3):834-844.
2. Krebs, J., Lofroth, E., Copeland, J., Banci, V., Cooley, D., Golden, H., Magoun, A., Mulders, R., Shults, B. (2004). Synthesis of Survival Rates and Causes of Mortality in North American Wolverines. The Journal of Wildlife Management, Jul. 2004. Vol.68, No. 3, pp493-502.

 Corposal Control Contectico Control Control Control Control Control Control Contr 1542(2003)084<0092 EOLMFW>2.0.CO;2

6. Mowat, G., Clevenger, A.P., Kortello, A.D., Hausleitner, D., Barrueto, M., Smit, L., Lamb, C., DorsEy, B. and Ott, P.K. (2020), The Sustainability of Wolverine Trapping Mortality in Southern Canada. Jour. Wild. Mgmt., 84: 213-226. https://doi.org/10.1002/jwmg.21787 7. Carroll, C., Noss, R.F. and Paquet, P.C. (2001), CARNIVORES AS FOCAL SPECIES FOR CONSERVATION PLANNING IN THE ROCKY MOUNTAIN REGION. Ecological Applications, 11: 961-980. https://doi.org/10.1890/1051-0761(2001)011[0961:CAFSFC]2.0.C0/2

horribilis) in the Lower-48 States. Version 1.2, January 22, 2022. Missoula, Montana. 369 pp.

Questions, Comments, Discussion

Social, Cultural & Economic Features

Social, Cultural & Economic Team Nominates:

Feature: Water Access						
Justification/Description/Considerations:						
Key Attributes	Measurable Indicators	Data & Sources				
Water Quantity	Reservoir distribution; municipal-managed watersheds; input- <mark>output</mark>	aquifer records; distribution systems; precipitation trends; climate projections; USGS discharge measurements; CMP's High5 Needle Pine group has a community watersheds shapefile.				
Water Quality	Reserve water quality; end pipe quality;	Agency (BOR, EPA) records; municipality records; well testing records				
Access	Urban; ex-urban; unincorporated; distances & economics * Tribal rights & Pacts	Spatial data on population distribution; water delivery infrastructure				
Public Attitudes						
Headwater Health		AB - in development WPAC Oldman watershed council - linear disturbance risk assessment -				

Feature: Air Quality						
Justification/Description/Considerations:						
Key Attributes	Measurable Indicators	Data & Sources				
Smoke Production	Fire frequency and size; fire distribution in relation to vulnerable population distribution; lifespan/mortality rates	NIFC, BAER, etc.				
Prescribed Fire	Agency planning (vs. implementation?); Rx frequency, size, seasonality; Ag field burning (upstream beyond CCE)	Agency records				
Particulates	Drought trend/frequency/severity; aeolian erosion rates	Drought indices; bare ground; seasonal agricultural practices; post-fire rehab & effectiveness				

Social, Cultural & Economic Features

Social, Cultural & Economic Team Still working on:

- Land Access
- Recreation
- Tourism
- Bison(?)

News from the Field

