7/13/21

Attendees: Kathy, Mary, Adam, Aubin, Jason Taylor, Trevor Reid, Peggy

Ecological Connectivity in the CCE

Rationale

- Will be modeling functional connectivity for CMP selected species because there is just a handful of species, it is recommended that coarser scale approach used to complement
- Ecological integrity includes both biotic and abiotic

Approach

- Using index of ecological integrity (Kevin McGarigal) Brad Compton has been super helpful in sharing code!
- It's a vetted process and worked well for north east LCC may want to adapt for this landscape
- Will be presenting the connectedness metric
- Connectedness metric
 - Measure of physical continuity of ecological features
 - Crown is divided into raster; connectedness is measured for each pixel on the landscape
 - Describes how ecological flows from cell to cell are impeded or facilitated by surrounding landscape

Ecological Features

- Human development,
 - Hard development (building and paved roads); road capacity proxy for road traffic - used CMP roads layer
- Climate
 - Mean annual temp and mean annual precip
 - Want to keep variables as uncorrelated as possible, but we can think about what variables may be most appropriate
- solar energy
 - Theobald predicts solar radiation
- chemical and physical substrate
 - Soil variables % clay, pH, and soil depth
- physical disturbance
 - Slope fire, avalanches, landslides
 - Fire layer was patchy seemed to bias areas to areas of fire
 - Maybe need a more continuous layer
- Moisture
 - Wetness index based on DEM amount of moisture at any point on the landscape
- Hydrology
 - Stream temp, flow gradient, flow volume
- Vegetation

- Vegetative structure regrouped
- Questions about the ecological features:
 - Is the data all CMP wide/wall to wall?
 - that is correct; data is pulled from CMP, more global sources, etc.
- Resistance estimation
 - Calculating resistance for each pixel on the landscape
 - If I have max similarity to the pixel next to me, I'm gonna have a distance of 0; if maximally dissimilar, I'll have a distance of 1
 - Weighted by "importance" of each ecological feature weights are all relative

	Hard devel opme nt	Road capac ity	Tempe rature	Precipi tation	Heat load	Clay	pН	Soil depth	Slope	Wetne ss	Stream temp	Flow gradie nt	Flow volume	Veg structu re
Resistance weight	2	40	1	1	1	0.5	0.5	0.5	1	4	1	1	4	1
Distance weight	1000	0	1	1	1	0.5	0.5	0.5	1	8	1	2	5	4

Resistant Kernel

- "Pay out bank account" when you cross pixels when you run out of money, that's when you stop
- Radius of 2km
 - Might be relevant for smaller organisms with lower movement abilities
- Not only are we interested in flow from each focal pixel, we are also interested in ecological similarity

Results

- Definite line at the border related to land use land cover layer
- Glacier area topographically complex
- Rescaled surface
 - o Puts every ecosystem type on the same terms a quantile rank rescale
 - Highlights areas of landcover types
 - Ninepipes example
 - When you scale, you see importance of wetlands
 - Bison Range
 - Low connected value for roads and also streams, but When you scale it, streams come out as being important
 - Note: analysis is 30m pixel size to upload online, had to make broader
- Next Steps:
 - Address sharp line at the border
 - Should we use vegetative structure or not?
 - Issues with paved road classes data cleaning
 - Large differences in high montane areas is this problematic for this landscape?
 - Do we want to add another human modification index layer
 - Add highway 93 wildlife crossings
 - Future forecasting

Questions:

- Using annual average precipitation.
 - where are places that don't get too cold in springtime? those areas promote more precip in rain form than snow form - for montane species, that becomes critical (ie. native salmonids); mix and match climate data input
- Internally, there may not be high connectivity in Glacier imagining a small critter getting around in intense, rocky mountain slopes
 - Could do a large intact block analysis
 - We are not necessarily thinking about how species are moving within that protected block (Glacier), but rather thinking about the connection between that block and another block
- Data source for land use/land cover used CEC landcover layer
 - Commission on Environmental Cooperation
 - If we want to model the current landscape and model future forecasted landscape, maybe we don't even want to include vegetation in current analysis
 - Have you checked out the Impact Observatory?
 - Kathy poked around it's very coarse, and bad at picking out linear developed features
- Why is such an artificial boundary appearing on an ecological map?
- using the CMP boundary, not the Crown LCD boundary
- Peggy and Kathy will schedule a meeting with Danielle to catch her up on this

Phase 1 tech report

- Incorporated Peggy's comments
- Hoping to finalize and put on the website soon!