xperimental tests of genetic rescue in westslope utthroat trout

onovan Bell, Ryan Kovach, and Andrew Whiteley

enetic Rescue — the increase in population growth rate due to the migration of new alleles

<u>nefits</u>

Alleviation of inbreeding depression

Increased persistence probability

<u>ncerns</u>

Outbreeding depression

Loss of genetic distinctiveness

Genetic divergence

merging Patterns

Evidence strongly suggests re-establishing gene flow among relatively recently connected populations will increase fitness Risks occur with strong genetic divergence or when life-histor differences large

Review

Genetic rescue to the rescue

Andrew R. Whiteley^{1*}, Sarah W. Fitzpatrick^{2*}, W. Chris Funk^{2,3*}, and David A. Tallmon^{4*}

¹ Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003, USA

² Department of Biology, Colorado State University, Fort Collins, CO 80523, USA

³ Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523, USA

⁴ Department of Biology and Marine Biology, University of Alaska Southeast, Juneau, AK 99801, USA

Headwater Trout

Many inbred and isolated populations

Managing for isolation

But, we also know salmonids are often locally adapted

Westslope Cutthroat Trout

Ideal candidate for rescue, especially east of the continental divide

But experimental approach needed

udy streams and translocations

ameters monitored

pulation parameters

Population growth rate/population size Genetic variation

<u>:al Rates</u>

Growth rate

Survival

Lifetime reproductive success

Genetic Rescue – the increase in population growth rate due to the immigration of new alleles

Experimental test of genetic rescue in brook trout in Virginia

Robinson et al. 2017. Molecular Ecology

cknowledgements

Jniversity of Montana: Gordon Luikart

Field Crew: Marcella Cross, Michael Krummel, and Anthony Dangora

aseline data collected in summer 2017

Summary of WCT Translocations

Subbasin (HUC8)	Creek	Population Type	Source Creek	# of Fish Introduced/
				Removed
Belt	NF Little Belt	Study	Gold Run	8/8
Belt	Gold Run	Study	NF Little Belt	8/8
Upper Missouri	Hall	Study	Quartz	6/6
Upper Missouri	Staubach	Study	Quartz	6/6
Big Hole	SF of NF Divide	Study	Papoose	3/0
Belt	Crawford	Control	NA	0/0
Upper Missouri	McClellan	Control	NA	0/0
Big Hole	Jerry	Control	NA	0/0

rook trout southern range

Hudy et al. 2008. NA Journal of Fisheries Managem